If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-50x^2+2500x-20000=0
a = -50; b = 2500; c = -20000;
Δ = b2-4ac
Δ = 25002-4·(-50)·(-20000)
Δ = 2250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2250000}=1500$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2500)-1500}{2*-50}=\frac{-4000}{-100} =+40 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2500)+1500}{2*-50}=\frac{-1000}{-100} =+10 $
| 3x-15=2x+5+x | | x+(-45)=20, | | -6x-4-6x=-124 | | x+(-16)=35, | | 5-4x+6x=-15 | | x+59=29 | | x+(-42)=46 | | 6x+9-3x=15 | | 3(4w=6)*2=4 | | 3+2x-x=3 | | -4=2(3t-8) | | 1/2h+2=2 | | (11x-39)+(12x-11)=180 | | x-9.43=6.3 | | 4(2x+3)+4=14 | | x+2.74=6.33 | | 95+7x+9+4x+10=180 | | y-4.5=1.67 | | 3+9x=-42 | | 5x−12=2x=24 | | 2x-3-7x=47 | | 1.2x+x=60 | | 180=119+(-3x+143) | | -7x+3+3x=-29 | | 14y-100=-100 | | (p-4)=(p+2) | | 2^x+1+2^x+2+2^x+3=112 | | (k+1)(k+1)=9 | | 5+2a-7=0 | | 10-3x+x=2 | | u+22/10=3 | | 9y+99=180 |